APPULSE-PNH: oral iptacopan monotherapy demonstrates clinically meaningful hemoglobin increases in patients with paroxysmal nocturnal hemoglobinuria and hemoglobin ≥10 g/dL on anti-C5 therapy

Austin Kulasekararaj^{1–3}, Flore Sicre de Fontbrune^{3,4}, Anna Gaya⁵, Ilene Weitz⁶, David J Kuter^{7,8}, David J Araten^{9,10}, Bhumika J Patel¹¹, Abhay Singh¹², Jun Ho Jang¹³, Richard J Kelly¹⁴, Eros Di Bona¹⁵, Michael Loschi¹⁶, Vinod Pullarkat¹⁷, Jörg Schubert¹⁸, Alessandro M Vannucchi¹⁹, Mustafa N Yenerel²⁰, Régis Peffault de Latour^{3,4,21}, Navin Mahajan²², Luca Monaco²², Tao Ding²³, Tomasz Lawniczek²², Philippe Ferber²², Marion Dahlke²², Antonio M Risitano^{3,24,25}

 ¹King's College Hospital NHS, London, UK; ²National Institute for Health and Care Research and Wellcome King's Research Facility, London, UK;
 ³The Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation; ⁴French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Paris, France; ⁵Hospital Clínic of Barcelona, Barcelona, Spain; ⁶USC Norris Cancer Center, Keck-USC School of Medicine, Los Angeles, CA, USA; ⁷Massachusetts General Hospital, Boston, MA, USA; ⁸Harvard Medical School, Boston, MA, USA; ⁹NYU Langone Medical Center, New York, NY, USA; ¹⁰NYU Grossman School of Medicine, New York, NY, USA;
 ¹¹Prisma Health Cancer Institute, Greenville, SC, USA; ¹²Cleveland Clinic, Cleveland, OH, USA; ¹³Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ¹⁴St James's University Hospital, Leeds, UK; ¹⁵UOC Oncoematologia, AULSS7 Pedemontana, Bassano del Grappa (VI), Italy; ¹⁶Nice University Hospital, Cote d'Azur University, Nice, France; ¹⁷City of Hope Medical Center, Duarte, CA, USA; ¹⁸Dresden University Medical School, Dept. of Hematology, Cellular Therapy and Medical Oncology, Dresden Germany;
 ¹⁹Azienda Ospedaliera Universitaria Careggi, University for Florence, Florence, Italy; ²⁰Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey; ²¹Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; ²²Novartis Pharma AG, Basel, Switzerland;
 ²³China Novartis Institutes For Biomedical Research Co. Ltd, Shanghai, China; ²⁴AORN Moscati, Avellino, Italy; ²⁵University of Naples Federico II, Naples, Italy

Scan to obtain the slides

https://tinyurl.com/ KulasekararajS183

Copies of this presentation obtained through quick response (QR) code are for personal use only and may not be reproduced without permission of the authors

Disclosures

- Consulting fees: Alexion (AstraZeneca Rare Disease), Arrowhead, NovoNordisk, Samsung and Silence Therapeutics
- Payment or honoraria for lectures, presentations, speakers' bureaus, manuscript writing or educational events: Alexion (AstraZeneca Rare Disease), Amgen, Celgene/Bristol Myers Squibb, Janssen, Novartis, Pfizer, Ra Pharma/Union Chimique Belge, Roche and Sobi
- Support for attending meetings and/or travel: Alexion (AstraZeneca Rare Disease), Roche and Sobi
- Participation on a data monitoring safety board or advisory board: Agios, Alexion (AstraZeneca Rare Disease), Amgen, Apellis, Biocryst, Celgene/Bristol Myers Squibb, Geron, Janssen, Novartis, Pfizer, Regeneron, Roche and Sobi

In PNH, impaired complement regulation due to CD55 and CD59 deficiencies leads to IVH^{1–3}

Figure created based on information from multiple sources.^{1,4–6} C, complement component; CD, cluster of differentiation; FB, factor B; FD, factor D; GPI, glycosylphosphatidylinositol; IVH, intravascular hemolysis; MAC, membrane attack complex; PNH, paroxysmal nocturnal hemoglobunuria; RBC, red blood cell 1. Brodsky RA, *Blood* 2014;124:2804–11; 2. Hill A *et al.* Nat Rev Dis Primers 2017;3:170281; 3. Buiz-Arguelles A, Lorente L, Autoimmun Rev 2007;6:155–61; 4. Bicklin D *et al.* Nat Imp

1. Brodsky RA. *Blood* 2014;124:2804–11; 2. Hill A et al. Nat Rev Dis Primers 2017;3:170281; 3. Ruiz-Arguelles A, Llorente L. Autoimmun Rev 2007;6:155–61; 4. Ricklin D et al. Nat Immunol 2010;11:785–97; 5. Merle NS et al. Front Immunol 2015;6:262; 6. Innate immunity. In: Janeway CA Jr et al. Immunobiology. 5th ed. New York, NY: Garland Science, 2001

Anti-C5 treatment can lead to the emergence of EVH¹⁻⁴

Figure created based on information from multiple sources^{3,5-7}

EVH, extravascular hemolysis

1. Risitano AM *et al. Front Immunol* 2019;10:1157; 2. Risitano AM *et al. Blood* 2009;113:4094–100; 3. Brodsky RA *Blood* 2014;124:2804–11; 4. Hill A *et al. Nat Rev Dis Primers* 2017;3:170281; 5. Ricklin D *et al. Nat Immunol* 2010;11:785–97; 6. Merle NS *et al. Front Immunol* 2015;6:262; 7. Innate immunity. In: Janeway CA Jr *et al.* Immunobiology. 5th ed. New York, NY: Garland Science, 2001

Iptacopan targets factor B to selectively block alternative pathway C3 convertase activation and achieve comprehensive hemolysis control^{1–3}

Figure created based on information from multiple sources³⁻⁶

1. Schubart A et al. Proc Natl Acad Sci U S A 2019;116:7926–31; 2. Risitano AM et al. Lancet Haematol 2021;8:e344–54; 3. Brodsky RA Blood 2014;124:2804–11; 4. Ricklin D et al. Nat Immunol 2010;11:785–97; 5. Merle NS et al. Front Immunol 2015;6:262; 6. Innate immunity. In: Janeway CA Jr et al. Immunobiology. 5th ed. New York, NY: Garland Science, 2001

Patients with PNH who achieve Hb ≥10 g/dL with anti-C5 therapy may have ongoing EVH and experience a substantial QoL burden

Oral iptacopan monotherapy has demonstrated efficacy and safety in:

Complement inhibitor-naïve patients with Hb <10 g/dL and LDH >1.5 × ULN (APPOINT-PNH)^{1,2}

Anti-C5-experienced patients with Hb <10 g/dL (APPLY-PNH)^{1,2}

APPULSE-PNH evaluated the efficacy and safety of oral iptacopan monotherapy in anti-C5-treated patients with Hb \geq 10 g/dL who:

- May have ongoing EVH (indicated by increased ARC and C3d+ PNH RBCs)^{3–5}
- May remain anemic according to WHO guidelines* resulting in fatigue, impaired QoL and an increased risk of serious complications^{6–10}
- Require hospital visits every 2 or 8 weeks for IV anti-C5 infusions¹¹

^{*}Hb <12 and <13 g/dL for adult women and men, respectively

ARC, absolute reticulocyte count; Hb, hemoglobin; IV, intravenous; LDH, lactate dehydrogenase; QoL, quality of life; ULN, upper limit of normal; WHO, World Health Organization

^{1.} Peffault de Latour R et al. N Engl J Med 2024;390:994–1008; 2. Risitano AM et al. Lancet Haematol 2025;12:e414–30; 3. Risitano AM et al. Front Immunol 2019;10:1157;

^{4.} Debureaux P-E *et al. Bone Marrow Transplant* 2021;56:2600–2; 5. Risitano AM *et al. Blood* 2009;113:4094–100; 6. World Health Organization. Guideline on haemoglobin cutoffs to define anaemia in individuals and populations. Available at: https://www.who.int/publications/i/item/9789240088542 (accessed June 2025); 7. Bektas M *et al. J Manag Care Spec Pharm* 2020;26:S8–14; 8. Young NS *et al. Semin Hematol* 2009;46:S1–16; 9. Dingli D *et al. Ann Hematol* 2022;101:251–63; 10. Panse J *et al. HemaSphere* 2024;8(S1);4998–9; 11. Levy AR *et al. Blood* 2019;134:4803

APPULSE-PNH was a single-arm, open-label, multicenter, Phase IIIb trial

bid, twice daily; BMF, bone marrow failure; CI, confidence interval

1. ClinicalTrials.gov. NCT05630001. Available at: https://clinicaltrials.gov/study/NCT05630001 (accessed June 2025);

2. ClinicalTrials.gov. NCT04747613. Available at: https://clinicaltrials.gov/study/NCT04747613 (accessed June 2025)

Demographics, baseline disease characteristics and disposition

Characteristic	lptacopan 200 mg bid (N=52)	Characteristic	Iptaco	pan 200 mg bid (N=52)
Mean age, years (SD)	46.0 (13.7)	Mean FACIT-Fatigue score,	(SD)	38.9 (9.4)
Female, n (%)	20 (38.5)	Mean PNH clone size (SD)		
Race, n (%) White Asian	35 (67.3) 4 (7.7)	Total RBC (type II + III) Granulocyte Monocyte	5 5 5	51.7 (30.6) 32.2 (16.0) 30.2 (19.5)
Not reported/unknown	13 (25.0)	• 98.1% (51/52) of patients	completed the	study
Mean time since diagnosis, years (SD)	10.8 (7.5)	 One discontinued on Day 104 because of a non-serious 		
Prior anti-C5 treatment, n (%) Ravulizumab Eculizumab	46 (88.5) 6 (11.5)	 TEAE of palpitations Mean relative dose intensity[†] was 99.9% (SD 0.28) 		
Mean duration of prior anti-C5,* years (SD)	3.5 (3.2)	B Characteristic Hb	Baseline Hb <12 g/dL	seline Baseline Hb ≾12 g/dL ≥12 g/dL N=32) (N=20)
Hb ≥12 g/dL, n (%)	20 (38.5)		(N=32)	
Mean Hb, g/dL (SD)	11.87 (1.32)	Mean Hb, g/dL (SD)	11.08 (0.5)	13.13 (1.2)
Mean ARC, 10 ⁹ /L (SD)	154.84 (76.16)	Mean ARC, 10 ⁹ /L (SD)	165.27 (75.61)	138.16 (75.92)
Mean LDH, U/L (SD)	226.8 (69.1)	Mean LDH, U/L (SD)	223.6 (75.5)	211.3 (55.5)

*Stable regimen; [†]Ratio across all patients of received dose intensity versus planned dose intensity of 400 mg per day (administered as 200 mg bid) FACIT, Functional Assessment of Chronic Illness Therapy; SD, standard deviation; TEAE, treatment-emergent adverse event

Iptacopan monotherapy led to rapid normalization of mean Hb levels

Mean Hb during APPULSE-PNH*

*At each visit, only patients with a value at both baseline and that visit are included. On-treatment period for iptacopan is from the date of the first dose until 7 days after the date of the last dose; †Mean baseline Hb: 11.87 (SD 1.32) g/dL

APPULSE-PNH met its primary and key secondary objectives

Adjusted mean change from baseline* in Hb between Day 126 and 168[†]

*Mean baseline Hb: 11.87 (SD 1.32) g/dL; [†]Analyzed using a a repeated measures model that adjusted for covariates; [‡]Assessed using predefined thresholds (lower bound of 95% Cl >-1 for inferiority and >0 g/dL for superiority). *P* values were one-sided and unadjusted

APPULSE-PNH met its primary and key secondary objectives

Adjusted mean change from baseline* in Hb between Day 126 and 168⁺ g/dL (95% CI) 3 Adjusted mean change 2 from baseline in Hb, +2.01 +2.37+1.44(2.01, 2.74)(1.74, 2.29)(1.04, 1.84)0 **Baseline** Baseline All Hb < 12 g/dL(N=52) Hb ≥12 g/dL (N=32) (N=20)

*Mean baseline Hb: 11.87 (SD 1.32) g/dL; [†]Analyzed using a a repeated measures model that adjusted for covariates; [‡]Assessed using predefined thresholds (lower bound of 95% Cl >-1 for inferiority and >0 g/dL for superiority). *P* values were one-sided and unadjusted

During APPULSE-PNH, most patients achieved Hb ≥12 g/dL and all patients remained transfusion free

Patients achieving Hb ≥12 g/dL between Day 126 and 168* in the absence of RBC transfusions between Day 1 and 168[†]

RBC transfusion avoidance

between Day 1 and 168⁺

*>3 of 4 scheduled assessments; †Neither meeting the criteria for administration of an RBC transfusion nor receiving an RBC transfusion; ‡Calculated using bootstrap method; §Calculated using Wilson's method

Mean LDH remained below the ULN throughout the study

Between Day 126 and 168, the adjusted mean percentage change from baseline in LDH^{*} was **-1.30%** (95% CI -6.56, 4.26),[†] with a geometric adjusted mean ratio versus baseline* of **0.99** (95% CI 0.93, 1.04)

Mean LDH during APPULSE-PNH[‡]

No patients experienced clinical BTH§

*Mean baseline LDH: 226.8 (SD 69.1) U/L; †Analyzed using a repeated measures model that adjusted for covariates; ‡At each visit, only patients with a value at both baseline and that visit are included. On-treatment period for iptacopan is from the date of the first dose until 7 days after the date of the last dose; SClinical BTH was defined as LDH >1.5 × ULN with an increase compared with the last two assessments, together with either a decrease in Hb of ≥ 2 g/dL or significant clinical PNH-related signs and symptoms BTH, breakthrough hemolysis

Mean ARC rapidly decreased to within normal range, which was maintained throughout the study

Adjusted mean change from baseline* in ARC between Day 126 and 168 was -89.19 × 10⁹/L (95% CI -95.47, -82.92)[†]

*Mean baseline ARC: 154.84 (SD 76.16) × 10⁹/L; [†]Analyzed using a repeated measures model that adjusted for covariates; [‡]At each visit, only patients with a value at both baseline and that visit are included. On-treatment period for iptacopan is from the date of the first dose until 7 days after the date of the last dose LLN, lower limit of normal

Mean FACIT-Fatigue and TSQM-9 domains scores improved

Adjusted mean change from baseline* in FACIT-Fatigue score at Day 168 was **+4.29** (95% CI 1.74, 6.85)[†]

Mean TSQM-9 scores during APPULSE-PNH

*Mean baseline FACIT-Fatigue score: 38.9 (SD 9.4); †Analyzed using a repeated measures model that adjusted for covariates;

[‡]Mean (SD) baseline scores in the TSQM-9 effectiveness, convenience and global satisfaction domains were 67.8 (20.1), 57.4 (22.0) and 69.2 (21.1), respectively

TSQM-9, Treatment Satisfaction Questionnaire for Medication - 9 items

1. Cella D et al. Cancer 2002;94:528–38; 2. Montan I et al. Value Health 2018;21:1313–21

Mean PNH RBC clone size increased to become similar to mean PNH granulocyte clone size

Mean change from baseline* in total PNH RBC clone size[†] (exploratory endpoint) at Day 168 was +22.2% (SD 16.2)

Mean total PNH RBC[†] and granulocyte clone size during APPULSE-PNH[‡]

*Among the 46 patients who had available data at both baseline and Week 24 (mean baseline total PNH RBC clone size for these patients: 51.7% [SD 31.5]); [†]Type II + type III PNH RBCs; [‡]At each visit, only patients with a value at both baseline and that visit are included

Mean C3 deposition reduced to negligible levels by Week 16

Mean change from baseline* in C3d+ PNH RBCs[†] (exploratory endpoint) at Day 168 was **–11.6%** (SD 9.3)

*Among the 39 patients who had available data at both baseline and Week 24 (mean baseline C3d+ PNH RBCs for these patients: 11.8% [SD 9.2]); [†]Type II + type III PNH RBCs that were C3d+; [‡]At each visit, only patients with a value at both baseline and that visit are included

Safety event, n (%)	lptacopan 200 mg bid (N=52)			
Any TEAE	44 (84.6)			
Mild/moderate/severe TEAEs	27 (51.9)/15 (28.8)/2 (3.8)			
Most common TEAEs*				
Headache	9 (17.3)			
Diarrhea	6 (11.5)			
Nasopharyngitis	6 (11.5)			
Nausea	6 (11.5)			
Serious TEAEs	2 (3.8)			
Bacterial pneumonia	1 (1.9)			
Pyrexia [†]	1 (1.9)			
Traumatic subdural hematoma [†]	1 (1.9)			
Iptacopan-related serious TEAEs	0			
Deaths	0			

No patients experienced a MAVE (secondary efficacy endpoint)

- 42.3% (22/52) of patients had TEAEs in the infections and infestations system organ class
 - Infections likely caused by encapsulated bacteria were bacterial pneumonia (1.9%; 1/52) and otitis media (3.8%; 2/52)
- One patient discontinued iptacopan on Day 104 because of a non-serious TEAE of palpitations reported as suspected to be related to iptacopan

^{*}Occurring in ≥10% of patients; [†]The serious TEAEs of pyrexia and traumatic subdural hematoma occurred concurrently in the same patient MAVE, major adverse vascular event

- In anti-C5-experienced patients with Hb ≥10 g/dL, iptacopan was superior after switch from anti-C5 therapy in change from baseline in Hb
- Iptacopan enabled most patients to achieve Hb ≥12 g/dL and all patients to maintain transfusion independence
- Targeting factor B with iptacopan controlled anti-C5-induced EVH while maintaining IVH control
- Patients also reported improvements in fatigue and treatment satisfaction scores
- Iptacopan was well tolerated with no clinical BTH, MAVEs or new safety findings^{1,2}

Results from APPULSE-PNH and previous trials establish **oral iptacopan monotherapy** as a **potentially practice-changing** treatment capable of inducing **improvements in Hb to normal/near normal levels** by providing **comprehensive hemolysis control**^{1,2}

1. Peffault de Latour R et al. N Engl J Med 2024;390:994–1008; 2. Risitano AM et al. Lancet Haematol 2025;12:e414–30

- We thank the patients, their families, the investigators and staff at participating study sites
- This study was sponsored by Novartis
- We thank Jake Stoddart MRes, from AMICULUM, who provided medical writing support funded by Novartis Pharmaceuticals Corporation in accordance with Good Publication Practice 2022 guidelines

